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Definition

Apache Samza is an open source frame-
work for distributed processing of high-
volume event streams. Its primary design
goal is to support high throughput for a
wide range of processing patterns, while
providing operational robustness at the
massive scale required by Internet com-
panies. Samza achieves this goal through
a small number of carefully designed ab-
stractions: partitioned logs for messag-
ing, fault-tolerant local state, and cluster-
based task scheduling.

Overview

Stream processing is playing an increas-
ingly important part of the data man-
agement needs of many organizations.
Event streams can represent many kinds
of data, for example, the activity of users
on a website, the movement of goods or

vehicles, or the writes of records to a
database.

Stream processing jobs are long-
running processes that continuously
consume one Oor more event streams,
invoking some application logic on
every event, producing derived output
streams, and potentially writing output
to databases for subsequent querying.
While a batch process or a database
query typically reads the state of a
dataset at one point in time, and then
finishes, a stream processor is never
finished: it continually awaits the arrival
of new events, and it only shuts down
when terminated by an administrator.

Many tasks can be naturally ex-
pressed as stream processing jobs, for
example:

e aggregating occurrences of events,
e.g., counting how many times a
particular item has been viewed;

e computing the rate of certain events,
e.g., for system diagnostics, report-
ing, and abuse prevention;



e enriching events with information
from a database, e.g., extending user
click events with information about
the user who performed the action;

e joining related events, e.g., joining an
event describing an email that was
sent with any events describing the
user clicking links in that email;

e updating caches, materialized views,
and search indexes, e.g., maintaining
an external full-text search index over
text in a database;

e using machine learning systems
to classify events, e.g., for spam
filtering.

Apache Samza, an open source
stream processing framework, can be
used for any of the above applications
(Kleppmann and Kreps, [2015}; |[Noghabi
et al, [2017). It was originally developed
at LinkedIn, then donated to the Apache
Software Foundation in 2013, and
became a top-level Apache project in
2015. Samza is now used in production
at many Internet companies, including
LinkedIn (Paramasivam, [2016), Netflix
(Netflix Technology Blogl 2016), Uber
(Chenl 2016; [Hermann and Del Balso,
2017), and TripAdvisor (Calisi, [2016).

Samza is designed for usage scenar-
ios that require very high throughput:
in some production settings, it pro-
cesses millions of messages per second
or trillions of events per day (Feng|
2015; [Paramasivam), [2016; |[Noghabi
et all |2017). Consequently, the design
of Samza prioritizes scalability and
operational robustness above most other
concerns.

The core of Samza consists of sev-
eral fairly low-level abstractions, on top
of which high-level operators have been
built (Pathirage et al, |2016). However,
the core abstractions have been carefully
designed for operational robustness, and
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the scalability of Samza is directly at-
tributable to the choice of these founda-
tional abstractions. The remainder of this
article provides further detail on those
design decisions and their practical con-
sequences.

Partitioned Log Processing

A Samza job consists of a set of Java
Virtual Machine (JVM) instances, called
tasks, that each processes a subset of
the input data. The code running in each
JVM comprises the Samza framework
and user code that implements the re-
quired application-specific functionality.
The primary API for user code is the
Java interface St reamTask, which de-
fines a method process (). Figure [I]
shows two examples of user classes im-
plementing the St reamTask interface.

Once a Samza job is deployed and
initialized, the framework calls the
process () method once for every
message in any of the input streams.
The execution of this method may have
various effects, including querying
or updating local state and sending
messages to output streams. This model
of computation is closely analogous to
a map task in the well-known MapRe-
duce programming model (Dean and
Ghemawat, [2004), with the difference
that a Samza job’s input is typically
never-ending (unbounded).

Similarly to MapReduce, each Samza
task is a single-threaded process that it-
erates over a sequence of input records.
The inputs to a Samza job are partitioned
into disjoint subsets, and each input par-
tition is assigned to exactly one process-
ing task. More than one partition may be
assigned to the same processing task, in
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class SplitWords implements StreamTask { class CountWords implements StreamTask,
InitableTask {
static final SystemStream WORD_STREAM =
new SystemStream("kafka", "words"); private KeyValueStore<String, Integer> store;
public void process ( public void init(Config config,
IncomingMessageEnvelope in, TaskContext context) {
MessageCollector out, store = (KeyValueStore<String, Integer>)
TaskCoordinator _) { context.getStore ("word-counts") ;
}
String str = (String) in.getMessage();
public void process (
for (String word : str.split(" ")) { IncomingMessageEnvelope in,
out.send( MessageCollector out,
new OutgoingMessageEnvelope ( TaskCoordinator _) {
WORD_STREAM, word, 1));
} String word = (String) in.getKey();
} Integer inc = (Integer) in.getMessage();

Integer count = store.get (word);
if (count == null) count = 0;
store.put (word, count + inc);

Fig. 1 The two operators of a streaming word-frequency counter using Samza’s StreamTask API
(Image source: [Kleppmann and Kreps| (2015)), © 2015 IEEE, reused with permission)
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Fig. 2 A Samza task consumes input from one partition, but can send output to any partition
(Image source: [Kleppmann and Kreps| (2015)), © 2015 IEEE, reused with permission)
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which case the processing of those par-
titions is interleaved on the task thread.
However, the number of partitions in the
input determines the job’s maximum de-
gree of parallelism.

The log interface assumes that each
partition of the input is a totally ordered
sequence of records and that each record
is associated with a monotonically in-
creasing sequence number or identifier
(known as offset). Since the records in
each partition are read sequentially, a
job can track its progress by periodically
writing the offset of the last read record
to durable storage. If a stream processing
task is restarted, it resumes consuming
the input from the last recorded offset.

Most commonly, Samza is used
in conjunction with Apache Kafka
(see separate article on Kafka). Kafka
provides a partitioned, fault-tolerant log
that allows publishers to append mes-
sages to a log partition, and consumers
(subscribers) to sequentially read the
messages in a log partition (Wang et al,
2015 Kreps et al, 2011; |Goodhope
et al, 2012). Kafka also allows stream
processing jobs to reprocess previously
seen records by resetting the consumer
offset to an earlier position, a fact that is
useful during recovery from failures.

However, Samza’s stream interface is
pluggable: besides Kafka, it can use any
storage or messaging system as input,
provided that the system can adhere to
the partitioned log interface. By default,
Samza can also read files from the
Hadoop Distributed Filesystem (HDFS)
as input, in a way that parallels MapRe-
duce jobs, at competitive performance
(Noghabi et all 2017). At LinkedIn,
Samza is commonly deployed with
Databus inputs: Databus is a change
data capture technology that records the
log of writes to a database and makes
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this log available for applications to
consume (Das et al, [2012; Qiao et al,
2013). Processing the stream of writes
to a database enables jobs to maintain
external indexes or materialized views
onto data in a database and is especially
relevant in conjunction with Samza’s
support for local state (see Section
‘[Fault-tolerant Local State[”).

While every partition of an input
stream is assigned to one particular task
of a Samza job, the output partitions
are not bound to tasks. That is, when a
StreamTask emits output messages,
it can assign them to any partition of
the output stream. This fact can be
used to group related data items into
the same partition: for example, in the
word-counting application illustrated
in Figure 2] the SplitWords task
chooses the output partition for each
word based on a hash of the word. This
ensures that when different tasks en-
counter occurrences of the same word,
they are all written to the same output
partition, from where a downstream job
can read and aggregate the occurrences.

When stream tasks are composed
into multistage processing pipelines, the
output of one task becomes the input to
another task. Unlike many other stream
processing frameworks, Samza does not
implement its own message transport
layer to deliver messages between
stream operators. Instead, Kafka is used
for this purpose; since Kafka writes all
messages to disk, it provides a large
buffer between stages of the processing
pipeline, limited only by the available
disk space on the Kafka brokers.

Typically, Kafka is configured to re-
tain several days or weeks worth of mes-
sages in each topic. Thus, if one stage
of a processing pipeline fails or begins
to run slow, Kafka can simply buffer the
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input to that stage while leaving ample
time for the problem to be resolved. Un-
like system designs based on backpres-
sure, which require a producer to slow
down if the consumer cannot keep up,
the failure of one Samza job does not af-
fect any upstream jobs that produce its
inputs. This fact is crucial for the robust
operation of large-scale systems, since it
provides fault containment: as far as pos-
sible, a fault in one part of the system
does not negatively impact other parts of
the system.

Messages are dropped only if the
failed or slow processing stage is not
repaired within the retention period of
the Kafka topic. In this case, dropping
messages is desirable because it isolates
the fault: the alternative — retaining
messages indefinitely until the job is
repaired — would lead to resource ex-
haustion (running out of memory or disk
space), which would cause a cascading
failure affecting unrelated parts of the
system.

Thus, Samza’s design of using
Kafka’s on-disk logs for message trans-
port is a crucial factor in its scalability:
in a large organization, it is often the
case that an event stream produced by
one team’s job is consumed by one or
more jobs that are administered by other
teams. The jobs may be operating at
different levels of maturity: for example,
a stream produced by an important
production job may be consumed by
several unreliable experimental jobs.
Using Kafka as a buffer between jobs
ensures that adding an unreliable con-
sumer does not negatively impact the
more important jobs in the system.

Finally, an additional benefit of using
Kafka for message transport is that every
message stream in the system is accessi-
ble for debugging and monitoring: at any

point, an additional consumer can be at-
tached to inspect the message flow.

Fault-tolerant Local State

Stateless stream processing, in which
any message can be processed inde-
pendently from any other message, is
easy to implement and scale. However,
many important applications require that
stream processing tasks maintain state.
For example:

e when performing a join between two
streams, a task must maintain an in-
dex of messages seen on each input
within some time window, in order to
find messages matching the join con-
dition when they arrive;

e when computing a rate (number of
events per time interval) or aggrega-
tion (e.g., sum of a particular field),
a task must maintain the current ag-
gregate value and update it based on
incoming events;

e when processing an event requires
a database query to look up some
related data (e.g., looking up a user
record for the user who performed
the action in the event), the database
can also be regarded as stream
processor state.

Many stream processing frameworks
use transient state that is kept in mem-
ory in the processing task, for exam-
ple, in a hash table. However, such state
is lost when a task crashes or when a
processing job is restarted (e.g., to de-
ploy a new version). To make the state
fault-tolerant, some frameworks such as
Apache Flink periodically write check-
points of the in-memory state to durable
storage (Carbone et al, [2015); this ap-



proach is reasonable when the state is
small, but it becomes expensive as the
state grows (Noghabi et al, [2017).

Another approach, used, for exam-
ple, by Apache Storm, is to use an
external database or key-value store
for any processor state that needs to
be fault-tolerant. This approach carries
a severe performance penalty: due to
network latency, accessing a database
on another node is orders of magnitude
slower than accessing local in-process
state (Noghabi et al, [2017). Moreover,
a high-throughput stream processor can
easily overwhelm the external database
with queries; if the database is shared
with other applications, such overload
risks harming the performance of other
applications to the point that they
become unavailable (Kreps| 2014)).

In response to these problems, Samza
pioneered an approach to managing
state in a stream task that avoids the
problems of both checkpointing and
remote databases. Samza’s approach
to providing fault-tolerant local state
has subsequently been adopted in the
Kafka Streams framework (see article
on Apache Kafka).

Samza allows each task to main-
tain state on the local disk of the
processing node, with an in-memory
cache for frequently accessed items.
By default, Samza wuses RocksDB,
an embedded key-value store that is
loaded into the JVM process of the
stream task, but other storage engines
can also be plugged in its place. In
Figure the CountWords task
accesses this managed state through
the KeyValueStore interface. For
workloads with good locality, Samza’s
RocksDB with cache provides per-
formance close to in-memory stores;
for random-access workloads on large
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state, it remains significantly faster than
accessing a remote database (Noghabi
et al, 2017).

If a job is cleanly shut down and
restarted, for example, to deploy a new
version, Samza’s host affinity feature
tries to launch each StreamTask instance
on the machine that has the appropriate
RocksDB store on its local disk (subject
to available resources). Thus, in most
cases the state survives task restart with-
out any further action. However, in some
cases — for example, if a processing
node suffers a full system failure — the
state on the local disk may be lost or
rendered inaccessible.

In order to survive the loss of local
disk storage, Samza again relies on
Kafka. For each store containing state
of a stream task, Samza creates a Kafka
topic called a changelog that serves as
a replication log for the store. Every
write to the local RocksDB store is also
encoded as a message and published
to this topic, as illustrated in Figure [3]
These writes can be performed asyn-
chronously in batches, enabling much
greater throughput than synchronous
random-access requests to a remote data
store. The write queue only needs to
be flushed when the offsets of input
streams are written to durable storage,
as described in the last section.

When a Samza task needs to recover
its state after the loss of local storage,
it reads all messages in the appropriate
partition of the changelog topic and
applies them to a new RocksDB store.
When this process completes, the result
is a new copy of the store that contains
the same data as the store that was
lost. Since Kafka replicates all data
across multiple nodes, it is suitable for
fault-tolerant durable storage of this
changelog.
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If a stream task repeatedly writes
new values for the same key in its
local storage, the changelog contains
many redundant messages, since only
the most recent value for a given key
is required in order to restore local
storage. To remove this redundancy,
Samza uses a Kafka feature called log
compaction on the changelog topic.
With log compaction enabled, Kafka
runs a background process that searches
for messages with the same key and
discards all but the most recent of those
messages. Thus, whenever a key in the
store is overwritten with a new value, the
old value is eventually removed from the
changelog. However, any key that is not
overwritten is retained indefinitely by
Kafka. This compaction process, which
is very similar to internal processes in
log-structured storage engines, ensures
that the storage cost and recovery time
from a changelog corresponds to the
size of the state, independently of the
total number of messages ever sent to
the changelog (Kleppmann), 2017).

Cluster-based Task Scheduling

When a new stream processing job is
started, it must be allocated computing
resources: CPU cores, RAM, disk
space, and network bandwidth. Those
resources may need to be adjusted from
time to time as load varies and reclaimed
when a job is shut down.

At large organizations, hundreds or
thousands of jobs need to run concur-
rently. At such scale, it is not practical to
manually assign resources: task schedul-
ing and resource allocation must be au-
tomated. To maximize hardware utiliza-
tion, many jobs and applications are de-

ployed to a shared pool of machines,
with each multi-core machine typically
running a mixture of tasks from several
different jobs.

This architecture requires infrastruc-
ture for managing resources and for
deploying the code of processing jobs
to the machines on which it is to be
run. Some frameworks, such as Storm
and Flink, have built-in mechanisms for
resource management and deployment.
However, frameworks that perform
their own task scheduling and cluster
management generally require a static
assignment of computing resources —
potentially even dedicated machines —
before any jobs can be deployed to the
cluster. This static resource allocation
leads to inefficiencies in machine uti-
lization and limits the ability to scale on
demand (Kulkarni et al, 2015]).

By contrast, Samza relies on existing
cluster management software, which
allows Samza jobs to share a pool of
machines with non-Samza applica-
tions. Samza supports two modes of
distributed operation:

e A job can be deployed to a cluster
managed by Apache Hadoop YARN
(Vavilapalli et al, [2013). YARN is a
general-purpose resource scheduler
and cluster manager that can run
stream processors, MapReduce batch
jobs, data analytics engines, and var-
ious other applications on a shared
cluster. Samza jobs can be deployed
to existing YARN clusters without
requiring any special cluster-level
configuration or resource allocation.

e Samza also supports a stand-alone
mode in which a job’s JVM instances
are deployed and executed through
some external process that is not
under Samza’s control. In this case,
the instances use Apache ZooKeeper



(Junqueira et al, 2011) to coordi-
nate their work, such as assigning
partitions of the input streams.

The stand-alone mode allows Samza
to be integrated with an organization’s
existing deployment and cluster man-
agement tools, or with cloud computing
platforms: for example, Netflix runs
Samza jobs directly as EC2 instances on
Amazon Web Services (AWS), relying
on the existing cloud facilities for re-
source allocation (Paramasivam), 2016).
Moreover, Samza’s cluster management
interface is pluggable, enabling further
integrations with other technologies
such as Mesos (Hindman et al, 2011)).

With large deployments, an impor-
tant concern is resource isolation, that
is, ensuring that each process receives
the resources it requested and that a
misbehaving process cannot starve
colocated processes of resources. When
running in YARN, Samza supports the
Linux cgroups feature to enforce limits
on the CPU and memory use of stream
processing tasks. In virtual machine
environments such as EC2, resource
isolation is enforced by the hypervisor.

Summary

Apache Samza is a stream processing
framework that is designed to provide
high throughput and operational ro-
bustness at very large scale. Efficient
resource utilization requires a mixture
of different jobs to share a multi-tenant
computing infrastructure. In such an
environment, the primary challenge
in providing robust operation is fault
isolation, that is, ensuring that a faulty
process cannot disrupt correctly running
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processes and that a resource-intensive
process cannot starve others.

Samza isolates stream processing
jobs from each other in several different
ways. By using Kafka’s on-disk logs
as a large buffer between producers
and consumers of a stream, instead of
backpressure, Samza ensures that a slow
or failed consumer does not affect up-
stream jobs. By providing fault-tolerant
local state as a common abstraction,
Samza improves performance and
avoids reliance on external databases
that might be overloaded by high query
volume. Finally, by integrating with
YARN and other cluster managers,
Samza builds upon existing resource
scheduling and isolation technology that
allows a cluster to be shared between
many different applications without
risking resource starvation.
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