Thinking in Events: From Databases to Distributed
Collaboration Software
Keynote at the 15th ACM International Conference on Distributed and Event-Based Systems (DEBS)

Martin Kleppmann
University of Cambridge
Cambridge, UK
mk428@cst.cam.ac.uk

ABSTRACT

In this keynote I give a subjective but systematic overview of the
landscape of distributed event-based systems, with an emphasis
on two areas I have worked on over the last decade: large-scale
stream processing with Apache Kafka and associated tools, and
real-time collaboration software in the style of Google Docs. While
these may seem at first glance to be very different topics, there are
also important points of overlap. This paper lays out a taxonomy
of event-based systems that shows where their commonalities and
differences lie. It also highlights some of the key trade-offs that arise
in the implementation of event-based systems, drawing both from
distributed systems theory and from experience of their practical
deployment. Finally, the paper outlines a number of open research
problems in this field.

CCS CONCEPTS

« Information systems — Data streams; « Software and its en-
gineering — Publish-subscribe / event-based architectures; »
Applied computing — Event-driven architectures; « Theory of
computation — Distributed computing models.

KEYWORDS

stream processing, event sourcing, state machine replication, CRDTs,
real-time collaboration

ACM Reference Format:

Martin Kleppmann. 2021. Thinking in Events: From Databases to Distributed
Collaboration Software: Keynote at the 15th ACM International Conference
on Distributed and Event-Based Systems (DEBS). In The 15th ACM Interna-
tional Conference on Distributed and Event-based Systems (DEBS °21), June
28-Fuly 2, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3465480.3467835

1 INTRODUCTION

The term event means many different things in different branches
of computing. The goal of this paper is to illuminate, categorise,
and differentiate some of the main families of event-based systems,
with an emphasis on systems that are also distributed.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8555-8/21/06.

https://doi.org/10.1145/3465480.3467835

Section 2 presents a taxonomy that breaks down the field into
categories based on simple technical criteria. Each category is illus-
trated with examples of practical systems that employ the approach,
and it includes a discussion of the trade-offs: the pros and cons of
choosing one category over another. My hope is that this taxonomy
will provide a useful structure and vocabulary to researchers and
practitioners working with event-based systems, allowing us to
more easily communicate and reason about the fundamental design
choices of such systems.

Next, in Section 3 I present a personal perspective on two par-
ticular families of event-based systems that I have worked on over
the last decade: Apache Kafka and its stream processing ecosystem
(which I worked on in 2012-2015 during my time as industrial
software engineer at LinkedIn), and multi-user real-time collabo-
ration software in the style of Google Docs (which has been the
focus of my research since returning to academia in 2015). Reflect-
ing on these systems in the context of the taxonomy of Section 2
helps further illuminate the characteristics of event-based software
architecture.

Finally, Section 4 outlines some open problems that, I believe,
deserve further attention from researchers.

2 A TAXONOMY OF EVENT-BASED SYSTEMS

The following taxonomy categorises the different uses of events
based on the flowchart in Figure 1. Such a broad-brush taxonomy
cannot necessarily capture all of the nuance of the field, and some-
times the boundaries between categories can be blurry. Neverthe-
less, T hope that it will be a useful tool for understanding event-based
systems.

2.1 Notifications and persistence
At a high level, an event can be:

e a notification about the fact that something happened;
e a persistent record of the fact that something happened; or
e both.

With “notification” I mean that shortly after an event occurs, the
system invokes application code that may act on the event. Exam-
ples of notification events occur in many applications. JavaScript
code running in a web browser can register functions to be called
when the user does something, such as clicking or typing a key
on the keyboard: here the click or the key-press is the event [53].
Most other user interface frameworks have a similar system of
dispatching user input events to callback functions or event han-
dlers. Many operating systems offer asynchronous (non-blocking)
I/0 functionality, in which case a thread runs an event loop that

https://orcid.org/0000-0001-7252-6958
https://doi.org/10.1145/3465480.3467835
https://doi.org/10.1145/3465480.3467835

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

Are events persistent or ephemeral?
Do they serve as notifications?

persistent,

ersistent
no notification P

notifications

Time-series database,
fact table in star schema

Stream processing

'

Windowed
joins/aggregations?

windowed

Martin Kleppmann

ephemeral
notifications

User interface events,
reactive/functional reactive
programming

not windowed

Stream analytics, CEP

Database replication,
materialized views

Totally ordered log?

total order

Data model?

Data model?

partial order

Traditional database
replication (WAL)

Event sourcing,
state machine replication

Conflict-free replicated
data types (CRDTs)

Time warp

Figure 1: A taxonomy of event-based systems.

Thinking in Events: From Databases to Distributed Collaboration Software

processes notifications from the OS when requested I/O opera-
tions complete [48]. Discrete event simulations employ this type of
event for simulated, rather than physical, occurrences [52]. Reactive
and functional reactive programming (FRP) offer higher-level APIs,
such as a dataflow programming model, for working with streams
of events [6, 16]. In all of these examples, an event is something
that exists only in-memory in a single process; it is ephemeral,
not persistent, in the sense that it is not normally written to disk.
Ephemeral events exist only for the lifetime of a process and are
not preserved across restarts.

In contrast, persistent events do not necessarily have a notifica-
tion element. For example, time-series databases are often used to
record events that occurred over time, such as periodic readings
from a sensor, price updates of a financial asset, and tracking the
activity of a person or machine [44]. Another example is the fact
table that appears in the star or snowflake schema of data ware-
houses and business analytics systems: every row in the fact table is
typically a timestamped record of an event that happened, such as
the purchase of a particular product by a particular customer [32].
In such systems, an event is a value that is recorded in a database
for future analysis, but the receipt of the event does not necessarily
trigger the immediate execution of any application code. The pri-
mary purpose of the events from the user’s point of view is to allow
the retroactive querying and analysis of the event history, such as
examining trends and generating reports showing the change of
some metric over time.

Some systems combine these characteristics such that an event
is both a persistent record of the fact that something happened,
and also a notification (i.e. application code is called to handle the
occurrence of an event). I will broadly group such systems under
the term stream processing, and break them down into subcategories
later.

Some databases provide facilities such as materialized view main-
tenance and continuous queries (queries whose results are automati-
cally updated as the underlying data changes), which can also be
regarded as a form of notification [15, 24]. Many programming
models for distributed systems are based on sending and receiving
messages, and the receipt of a message can also be seen as a noti-
fication event that triggers the execution of application code. For
example, the actor model is a widely-used approach in which multi-
ple actors or lightweight threads, potentially located on different
machines, communicate by sending each other messages [65].

Persistence is a fuzzy concept in practice, because an event may
pass through multiple systems, some of which may write it to disk
and others may treat it as ephemeral (i.e. it might be lost if a node
crashes or if the network is unreliable). For example, some actor
frameworks and messaging middleware systems also include per-
sistence mechanisms for actor state and/or messages [7]; however,
in many message brokers, messages are stored only until they have
been successfully delivered to a consumer, and then deleted. On
the other hand, databases typically store data indefinitely until it is
explicitly deleted. For the purposes of this taxonomy, the exact per-
sistence characteristics of a system are not crucial, although many
of the systems we discuss later lean more towards the database-like,
long-term-storage end of the spectrum.

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

2.2 Windowing in stream processing

Zooming in on the systems that provide both persistence and noti-
fications, we can further differentiate them by examining the kind
of logic that can be performed in response to an event. The very
simplest stream processors use stateless operators, in which every
event can be processed independently of any other event, based
only on the information in that event (for example, selecting events
where a certain property of the event falls within some set of values).
However, stateless processing is rarely sufficient, and most interest-
ing applications also require event processing logic that combines
information from several events: in database parlance, a join or
grouping of events [12]. Events may be combined by aggregation
(e.g. computing the count, sum, or average of some property of a
set of events), by emitting compound events that include properties
from several input events, or by more complex state machines that
we discuss in Section 2.4.

Some stream processing systems are designed primarily for ap-
plications in which the events that need to be combined occur
fairly close together in time. For example, a stock trading system
may need to compute the minimum and maximum prices of an
asset per hour or per day, or a fraud detection system may need
to detect unusual patterns of recent activity on a customer’s credit
card. Such operations are known as windowed joins or aggregations.
Several types of window are in use (such as tumbling or sliding
windows [2]), but they all have in common that they place a bound
on the maximum time interval between any two events that may be
combined; any events that are further apart in time than this bound
are treated as unrelated [3]. Windowed processing often occurs in
business analytics on streams, or in complex event processing [50].

On the other hand, some applications need to combine events
that may lie arbitrarily far apart in time, and thus windowing is not
applicable [15]. For example, imagine a Twitter-like social network
in which there are three main types of event: posting a tweet (a
message), following a user, and unfollowing a user. When a user logs
in, they want to see tweets posted by the users they are following.
In a SQL database, this query might be expressed as follows:

SELECT tweets.*

FROM tweets

JOIN follows ON follows.followee_id = tweets.sender_id
WHERE follows.follower_id = logged_in_user_id

ORDER BY tweets.send_timestamp DESC

LIMIT 1000

In an event-based system, a tweet-posting event corresponds to
inserting a row into the tweets table, a follow event corresponds
to inserting a row into the follows table, and an unfollow event
corresponds to deleting a row from the follows table. However,
it may well be that the user followed another user years ago, and
thus finding the current list of people the user is following requires
going back arbitrarily far in the stream of follow/unfollow events.
The join therefore needs to be non-windowed.

The SQL query above is expensive to execute for users who fol-
low many people, since it needs to look up the recent tweets by all
followed people and merge them chronologically. For this reason,
Twitter constructs a cache that contains the result of the query
above for each user (this is known as the home timeline [42]). Keep-
ing this cache up-to-date requires a stream processor that combines

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

the tweet, follow, and unfollow events in order to incrementally
maintain a materialized view of the query above.

When a user posts a tweet, the stream processor needs to find
all the people who are following the sender and add the new tweet
to their home timelines. When user A follows user B, the stream
processor needs to find recent tweets by B and merge them into A’s
home timeline. When user A unfollows user B, it needs to remove
all tweets by B from A’s home timeline. Executing this stream join
efficiently requires indexes that allow looking up the current set of
followers for a given user, and the recent tweets for a given user.

2.3 Database replication and events

If we focus our attention on systems where the events are persistent
notifications without windowing, we may notice a strong similarity
to replication in database systems. The goal of replication is to
have a copy of the same data on several different machines: that
is, any two replicas converge to the same state, and all committed
transactions are reflected in that state [14]. Viewed through the lens
of event-based systems, we can treat every transaction that modifies
the database as an update event, the execution of an update (i.e.
reflecting the update in the database state) as the processing of that
event, and the replication of data from one machine to another as
the propagation of that event through the distributed system. Read-
only transactions may or may not correspond to events, depending
on the system.

In such a database system, the replication infrastructure ensures
that every event corresponding to a committed transaction is even-
tually processed by every non-faulty replica. We can classify such
replication systems into two broad categories: those that arrange
the replication events into a log, and those that use some other repli-
cation mechanism (such as gossip protocols [47], anti-entropy [19],
or clients independently updating several replicas [4]). The key
properties of a log are that the events in it are totally ordered (i.e.
all replicas observe the log entries in the same order), and it is
append-only (i.e. if a replica observes log entry A immediately fol-
lowed by log entry B, then there will never be a log entry C that
appears between A and B in the total order).

This append-only log is constructed either using a consensus
protocol such as Raft [55] or Multi-Paxos [46], or by designating one
replica as the leader (also known as master or primary) and all other
replicas as followers (aka slaves or secondary replicas) [23]. In fact,
most consensus protocols are essentially leader-based replication
combined with an automatic mechanism for electing a new leader
if the current leader fails [29]. The leader decides on the order in
which events should be appended to the log, and all other replicas
process the events in the order decided by the leader.

In many databases, the exact structure and content of the events
in the log has traditionally been an implementation detail of the
database system that is not exposed to applications. For example,
several database systems use the write-ahead log (WAL) for repli-
cation, which consists of records indicating how the database’s
on-disk data structures are changing; others use a separate replica-
tion log [28]. More recently, change data capture techniques have
been developed to extract the data change events (rows inserted,
updated, or deleted) from this log and make them available to ap-
plications via stream processing systems [1, 17].

Martin Kleppmann

2.4 State machine replication (SMR)

In WAL-based replication and change data capture, the primary
data model used by the application is the database state that can be
mutated by the application (e.g. by inserting, updating, or deleting
rows in tables), and the data change events are generated automati-
cally as a side-effect of these mutations. It is also possible to swap
these roles, making the data change events the primary data model
of the application, so that any state changes become a side-effect
of processing those events [41]. This is the idea behind state ma-
chine replication (SMR) [59], and the closely related concept of event
sourcing [20, 68]. My 2014 talk Turning the database inside-out [33]
also helped popularise this idea.

In SMR and event sourcing, the application does not directly
mutate the state of a database. Instead, the application defines a set
of event types that may occur; whenever something happens, an
event of the appropriate type is appended to an event log, and is
thereafter immutable. (In SMR, an event is also known as a com-
mand.) All replicas subscribe to this event log, and each replica
processes events in the order in which they appear in the log. The
event processing function can use arbitrary logic to update the
database state, as long as it is deterministic and it depends only on
the current database state and the content of the event. Provided
that each replica processes the same sequence of events in the same
order, and each replica starts in the same initial state (e.g. an empty
database), the deterministic event processing logic ensures that all
replicas move through the same sequence of states and end up in
the same final state [9, 59]. We can think of each replica as a state
machine whose state is its copy of the database, and whose state
transition function is the event processing function. Put another
way, the database state is a materialised view onto the underlying
event log [26].

An advantage of this approach is that well-designed events often
capture the intent and meaning of operations better than events
that are a mere side-effect of a state mutation [68]. For example,
“student x cancelled their enrollment in course y for reason z” is
a clear descriptive event, whereas “one row was deleted from the
enrollments table, the available_places field of a course was in-
cremented, and one row was added to the cancellation_reasons
table” is much less clear and embeds a lot of irrelevant detail about
the current database schema. An event log thus makes it easier for
the people who work with a system to understand how it got into
a particular state, which can help with audit and debugging [9].

Another advantage of an event log is that it can be replayed
in order to rebuild the resulting database state. If the application
developers wish to change the logic for processing an event, for
example to change the resulting database schema or to fix a bug,
they can set up a new replica, replay the existing event log using
the new processing function, switch clients to reading from the
new replica instead of the old one, and then decommission the
old replica [34]. This sort of retroactive change in business logic
is usually not possible in databases that rely on state mutation as
their primary data model. Moreover, it is easy to maintain several
different views onto the same underlying event log if needed. As
long as the rate of updates is not too high, it is often feasible to
retain the event log indefinitely and replay it occasionally as needed.
In systems with a high event rate such replay may not be feasible.

Thinking in Events: From Databases to Distributed Collaboration Software

Replica A:
append events ¢, d >’ . | b I . ‘ 4 ‘
(1,4) (2,4) (1,4) (2,A) (3,A) (4,4)
Replica B:
append events x, y >’ . |) I . ‘ y ‘
(1,A4) (2,4) (1,A) (2,A) (3,B) (4.B)

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

plalb|ecfx]a]y]
(1LA) (2,A4) (3,A) (,B) (4,4) (4,B)

W
network commmunication

~

[e[o]c]x]afy]
(1,A) (2,A) (3,4) (3,B) (4,A) (4B)

Figure 2: Obtaining a total order on events using Lamport timestamps, which are (counter, replicalD) pairs. Two events with the

same counter are ordered by replicalD; here we assume that A < B.

Blockchains and distributed ledgers also use SMR, in which case
the chain of blocks (and the transactions therein) constitutes the
event log, the ledger (e.g. the balance of every account) is the result-
ing state, and smart contracts or the network’s built-in transaction
processing logic are the state transition function [66].

The downside of the event sourcing/SMR approach is that it
is less familiar to most application developers than mutable-state
databases, and the level of indirection between the event log and
the resulting database state adds complexity in some types of appli-
cations that are more easily expressed in terms of state mutations.
In applications with a high rate of events, storing and replaying the
log may be expensive.

If permanent deletion of records is required (e.g. to delete per-
sonal data in compliance with the GDPR right to be forgotten [62]),
an immutable event log requires extra care. Proposed solutions
include periodically rewriting the log to remove any records that
need to be deleted, or encrypting personal data with a per-user key
that can be deleted if that user requests deletion of their data: a
record that cannot be decrypted is widely regarded as being equiva-
lent to a deleted record [63]. If the state of other systems is derived
from an event log, personal data can also be removed from those
downstream systems by first deleting personal data from the log
and then replaying the events.

2.5 Partially ordered events

Both WAL-based replication and SMR depend crucially on the as-
sumptions that all replicas process events in exactly the same or-
der. Within a single datacenter, this is a reasonable assumption,
since leader-based replication and consensus protocols work well
in this setting. However, if replicas are distributed across multiple
geographic locations, or if the network between replicas is unre-
liable, constructing a log becomes expensive, since appending an
event to the log requires at waiting least one network round-trip
to the leader and/or a quorum of replicas. In the extreme case, if
we want a replica to be able to generate and process events even
while it is completely disconnected from all other replicas (a system
that is “available” and “partition-tolerant” in the sense of the CAP

theorem [21]), the assumption of a totally ordered log becomes
impossible to satisfy [13, 18].

In a system that allows disconnected operation, the strongest
order we can guarantee is a causal order [5]. This is a partial order,
in contrast to the total order of a log. In a causally ordered system,
some events happen before other events [45], and those events are
processed in the same order by all replicas. However, other events
may be concurrent, which means that neither happened before the
other; in this case, different replicas may process those events in a
different order [10]. A partially ordered form of replication is also
known as optimistic replication [58].

Since replicas are not guaranteed to process events in the same
order, deterministic event processing is no longer sufficient to en-
sure that replicas end up in the same state. However, in some ap-
plications it is possible to ensure that whenever two events are
concurrent, processing them is commutative (for example, adding
numbers); in this case, the nondeterministic order of processing is
no problem, and the replicas can nevertheless converge. Section 2.6
expands on this idea.

In a partially ordered system it is still possible to enforce a to-
tal order on events after the fact, as illustrated in Figure 2. We
do this by attaching a logical timestamp to each event; Lamport
timestamps [45] are a common choice. These timestamps consist
of a counter, which is incremented for every event, together with
the globally unique ID of the replica that generated the event. In
Figure 2, two replicas initially have the same two events a and
b with timestamps (1, A) and (2, A) respectively. During a period
when the two replicas are disconnected from each other, replica
A generates two events ¢ and d with timestamps (3, A) and (4, A)
respectively, while concurrently replica B generates events x and y
with timestamps (3, B) and (4, B). After connectivity is restored, the
replicas learn about each others’ events, and merge them into a total
order. This order is defined by first sorting events by the counter
portion of their timestamps, and then breaking ties by sorting by
replica ID (here we assume A < B).

Timestamp ordering produces a totally ordered sequence of
events, but it is not a log, because new events are not always ap-
pended to the end. In Figure 2, when replica B receives event ¢ from

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

A, it must insert ¢ ahead of its existing events x and y in its event
sequence. Similarly, replica A must insert x between its existing
events ¢ and d. In SMR, the total order of events is fixed as soon as
an event is processed, but with timestamp ordering, the order may
need to be revised as more events are received from other replicas.

It is nevertheless possible to use timestamp-ordered events in
an SMR-like approach: that is, to use a deterministic function to
apply events one by one to the current replica state in timestamp
order. Assuming every replica eventually receives every event, all
replicas will eventually have the same timestamp-ordered sequence
of events, and thus all replicas will go through the same sequence
of states and end up in the same state. However, when a replica
processes events out of timestamp order (inserting an event some-
where in the middle of the timestamp-ordered sequence), it must
be able to roll back the replica state to the state at the time corre-
sponding to the insertion position, apply the new event, and then
replay the events whose timestamps are greater than that of the
new event [64]. This approach is known as time warp [31].

The cost of this rollback-and-replay process depends on the
degree to which events are received out-of-order. If the replicas
receive most events in ascending timestamp order, and they only
occasionally need to reorder the most recent couple of events, the
cost can be modest [43]. On the other hand, if replicas might gener-
ate large numbers of events while disconnected from each other,
the cost of merging n events into a linear sequence may become as
great as O(n?).

Moreover, if processing an event may have external side-effects
besides updating a replica state — for example, if it may trigger an
email to be sent — then the time warp approach requires some way
of undoing or compensating for those side-effects in the case where
a previously processed event is affected by a late-arriving event
with an earlier timestamp. It is not possible to un-send an email
once it has been sent, but it is possible to send a follow-up email
with a correction, if necessary. If the possibility of such corrections
is unacceptable, optimistic replication cannot be used, and SMR or
another strongly consistent approach must be used instead. In many
business systems, corrections or apologies arise from the regular
course of business anyway [27], so maybe occasional corrections
due to out-of-order events are also acceptable in practice.

2.6 Conflict-free Replicated Data Types
(CRDTs)

In the time warp approach, like in SMR and event sourcing, the
events are the primary data model for the application, and the
replica state is derived from the events. Similarly to Section 2.4, we
can also choose to swap these roles, so that the mutable replica
state is the application’s primary data model, and the events are
generated automatically as a side-effect of mutating this state. If we
take the mutable-state approach in the context of a partially ordered
system, we obtain a technique called Conflict-free Replicated Data
Types or CRDTs [60].

CRDTs have been defined for a number of common abstract data
types: sets, maps, lists, trees, graphs, and so on [61]. Applications
may mutate these structures through the operations provided by the
data type’s interface: for example, a set or a list can be mutated by
inserting or deleting elements; a map can be mutated by assigning

Martin Kleppmann

a value to a key or by deleting a key-value pair. These mutations
can take place even while a replica is disconnected from the rest of
the system.

In operation-based CRDTs, the CRDT algorithm tracks any muta-
tions to a data object and generates events (usually called operations)
describing the changes. These events are partially ordered; causal
ordering, like in Section 2.5, is a common choice [22]. When a
replica receives an event generated by another replica, it invokes
the CRDT algorithm to update its state. This algorithm is carefully
designed such that applying concurrent events is commutative: that
is, the final state is the same, regardless of the order in which a
replica applies a set of concurrent events. By relying on commuta-
tivity, CRDTs ensure that replicas converge to a consistent state,
without requiring that all replicas process events in the same order.

Many CRDT algorithms have behaviour that can equivalently be
expressed in the time warp model [37]. However, CRDTs have the
advantage that they usually do not require the rollback-and-replay
process of time warp, so they can offer higher performance [57]. The
state mutation model of CRDTs is a good fit for applications where
the users are able to more or less directly manipulate the state in
question: for example, in a text editor, users can insert or delete text
anywhere in the document; and in graphics editing software, users
can create, delete, move, or modify graphical objects anywhere
within the picture. In such applications, the level of indirection
provided by event sourcing is not needed, since the events would
only express low-level state updates anyway (e.g. “insert character
A at position x”, or “change the coordinates of object A to (x,y)”).

A disadvantage of CRDTs is that they support only the predefined
operations offered by the data type’s interface: for example, while
list CRDTs allow elements to be inserted or deleted, most do not
have good support for reordering list items [35]. In contrast, the
time warp model allows any deterministic, pure function to be used
for processing events, making it more flexible.

3 PRACTICAL EXAMPLES

In this section I offer a personal perspective by briefly discussing
practical applications of the models from Section 2. I draw examples
from two areas I have directly worked on: stream processing with
Apache Kafka and related tools, and collaboration software that
allows several people to work together on a shared document.

3.1 The Kafka Ecosystem

Apache Kafka is a publish/subscribe message broker based on event
logs [41, 67]. It is widely used in enterprises where some teams want
to publish streams of events relating to their business operations,
and other teams want to subscribe to and process those event
streams [40]. The Kafka ecosystem includes stream processing
frameworks (Kafka Streams, Flink [12], Samza 38, 54]), a SQL-based
stream query engine (ksqIDB), and tools for change data capture
that obtain event streams from external systems such as databases
(Kafka Connect, Debezium [1]). Kafka-based stream processors are
used for both windowed and non-windowed processing.

Every event in Kafka belongs to a topic, and subscribers choose
which topics to listen to. For scalability reasons, Kafka provides
not just one log: every topic consists of a configurable number
of separate logs (called partitions or shards). All events within a

Thinking in Events: From Databases to Distributed Collaboration Software

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

User interface

- g |:| _ —
8 Render I:l
: % function
st s (React) (=]
ST C‘,?O o Automerge
} NN s document
(ad wn
5 wpietam. o w
8 { Eltle ':' Loy
O cards": [‘
X" .. W
/ > X0, b | giate updates ©
}
click, drag,

key press

Figure 3: A functional reactive programming model for local user input and collaboration with remote users. Figure from [25].

given partition are totally ordered. This partitioning design has
the advantage that different partitions can be handled by different
nodes without requiring coordination; it has the disadvantage that
there is no defined ordering of events across different partitions.

Therefore, when Kafka is used in an event sourcing/SMR style,
we have to either use a single partition (limiting the scalability
of the system), or break the state of the system into independent
partitions to match the partitioning of the event logs. For example,
if the state can be broken up by entity (so that each event relates
to one entity, and the state of an entity is determined only by the
events relating to that entity), then we can ensure that all events
relating to the same entity are placed into the same partition. Each
event log partition can then be processed independently to obtain
the state for the entities within that partition.

The situation is more complicated if the system cannot be neatly
broken down into separate partitions: for example, if one event
may relate to multiple entities (e.g. it represents the transfer of
money from one entity to another), then it is no longer sufficient
to process the events in each partition independently. Online event
processing (OLEP) [36] is an approach for handling such multi-
partition interactions by breaking them down into multiple stream
processing stages.

In some applications, an event needs to be checked against the
current state of the system to determine whether it is allowed. For
example, an event representing the booking of a seat in a theatre
may be allowed only if that seat is not already taken. In a mutable-
state database model, such a validation would be performed by a
transaction that first reads the current state of the database (whether
the seat is available), and then atomically writes its update only if
the check succeeded. Kafka does not natively support such valida-
tions, but it is possible to implement them using a two-stage stream
processing pipeline: an initial event represents only the intention to
perform a certain action; then a stream processor joins that event
with the current state to determine whether the action is permitted,
and if so, emits a new event to a stream of validated events [36].

3.2 Local-first Collaboration Software

Over the past several years, my collaborators and I have been work-
ing on new foundations for collaboration software, that is, appli-
cations that allow several users to collaboratively modify a shared
file. The file could be a text document, a drawing, a spreadsheet,
a to-do list, or many other types of data. Software that runs on
mobile devices needs to work offline: for example, you should be
able to add an item to your to-do list even if your phone currently
has no cellular data coverage. It is therefore clear that this type
of application operates in the partially ordered, non-windowed,
persistent part of the taxonomy.

More specifically, we are designing this software according to
the local-first approach [39], in which every end-user device from
which a user accesses their data is treated as a full-fledged replica
using its local on-device storage. When a user modifies their data,
they immediately update the replica on their local device, even if
it is offline, and any updates are synced to the replicas on other
devices the next time a network connection is available.

We use CRDTs to implement this approach, and thus the events
describing data updates are generated by the CRDT algorithm as
a side-effect of a mutation of a replica’s state. As explained in
Section 2.6, this model is a good fit for collaboration software where
user input takes the form of state mutations. To this end we have
developed a CRDT library called Automerge,! which provides a
JSON data model. This data model is sufficient for implementing a
variety of applications [25, 39].

CRDT-generated events also serve as notification that a docu-
ment has changed, which enables real-time collaboration among
several users editing the same document. We handle such events
using a functional reactive programming model illustrated in Fig-
ure 3. The current state of the user’s application is represented as
an Automerge CRDT data structure. A rendering function takes
this data structure and translates it into the corresponding user
interface elements that should be displayed on screen [25]. In web

!https://github.com/automerge/automerge

https://github.com/automerge/automerge

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

applications, Facebook’s React? is a popular library for performing
this kind of rendering.

The rendered user interface has attached event handlers that are
called when the user interacts with the respective user interface
elements (these events are ephemeral). When such an event handler
is called, it does not update the user interface directly, but rather
it mutates the Automerge CRDT state to reflect the user input,
and then the rendering function is called again to update the user
interface. This functional reactive programming model makes the
software easy to reason about, because data flows only one way:
the user interface state is always derived from the Automerge state,
not the other way around.

When a user thus mutates the Automerge state, the CRDT gen-
erates a change event, persists it locally, and uses a messaging
middleware or sync protocol to send it to all other devices that
have a replica of that document. When a replica receives such an
event from a remote user, it uses the CRDT logic to update the local
Automerge state, and then calls the rendering function in exactly
the same way as it does for a change made by the local user. Us-
ing the same code paths and data flows for real-time collaboration
as for local user input significantly simplifies the programming
model. This approach is discussed in more detail in our paper on
PushPin [25], one of our local-first software prototypes.

The change events generated by the CRDT represent the editing
history of the document; we can think of these events as being
similar to commits in a Git commit history. Persisting these events
provides useful capabilities: we can reconstruct the state of the
document at any past moment in time, and compute the differences
between versions of the document to visualise the change history.
We can also support collaboration workflows in which one user
suggests changes to a document and another user can accept or
reject the changes: in Git terms, one user can create a branch (a set
of commits that are not yet part of the main document version),
and another user can choose whether to merge it. Any number of
branches can exist at the same time, and users can tentatively com-
bine them to see what the document state would be if the branches
were merged. Enabling such advanced workflows is a direct conse-
quence of representing the application state as a partially ordered
set of change events.

4 CONCLUSIONS AND FUTURE WORK

Events are used to great effect in a wide variety of systems, and
this paper has provided a systematic overview of the field of event-
based software. The taxonomy of Section 2 categorises event-based
systems based on some simple criteria: whether the events are per-
sistent, whether they act as notifications (triggering the execution of
application code), whether there is a time bound on events that can
be joined, whether the events are totally or partially ordered, and
whether the application’s primary model for expressing changes is
by mutating state or by generating events. As we saw in this paper,
there is no one true way: all of the categories in the taxonomy have
important use cases. I have given examples of those use cases, and
highlighted some of the key trade-offs that determine the pros and
cons of different categories depending on the situation.

Zhttps://reactjs.org/

Martin Kleppmann

I will close by outlining some open questions and challenges for
future research.

4.1 Multi-version/Branching Workflows

Most replicated systems are based on the assumption that every
replica should immediately process every event it receives, so that
its state is as up-to-date as possible. However, sometimes this is
not actually what we want: as suggested in Section 3.2, we may
want to tentatively make some changes to a copy of a dataset, allow
several users to inspect and discuss these changes, and then decide
later whether to merge them into the primary copy of the dataset.
In source code repositories we do this all the time with branches,
merges, and pull requests; why can we not do the same with other
forms of data?

Database transactions support a weak form of multi-version con-
currency control by allowing an uncommitted transaction’s writes
to be either committed or rolled back by aborting the transaction [8].
However, most databases do not allow one user to share the state of
an uncommitted transaction with another user, and most databases
do not allow the user to find out what data has changed in an
uncommitted transaction (the equivalent of git diff). Moreover,
in most database systems, an uncommitted transaction may hold
locks and thus prevent other transactions from making progress.

Partially ordered event-based systems are well placed to support
such branching-and-merging workflows, since they already make
data changes explicit in the form of events, and their support for
concurrent updates allows several versions of a dataset to coexist
side-by-side. CRDTs provide us with a mechanism for merging
such diverged versions of a dataset. However, there are many open
questions around how such systems should handle data versioning,
including comparing and visualising differences between versions
of a dataset, and which internal representations systems can use to
efficiently operate on such multi-versioned data.

4.2 Data Model Changes

A challenge in many event-based systems is how to handle changes
in the schema or data format [56]. The problem is especially pro-
nounced in systems where we cannot guarantee that all replicas
are running the same version of the software. For example, in ap-
plications that run on end-users’ devices, it is up to the user to
decide when to install a software update; thus, a user who is hes-
itant to install updates may be running a much older version of
an application than a user who always installs the latest version.
Nevertheless, those users should be able to interoperate as much as
possible, which means that any data format changes must be both
forward and backward compatible. The challenge becomes even
greater if users are able to customise the software they are running,
e.g. through end-user programming [30].

In systems that are based on immutable events, one promising
approach is to use bidirectional functions (lenses) to convert be-
tween different versions of a data model, which allows different
replicas to use different state representations while still being able
to interoperate [49]. Open questions include how far this type of
conversion can extend, how to support a range of different data
models, how to make this programming model more accessible to
application developers, and how to make it efficient.

https://reactjs.org/

Thinking in Events: From Databases to Distributed Collaboration Software

4.3 Data Change Notifications Everywhere

There is growing commercial interest in systems that perform mate-
rialized view maintenance on top of event streams: startups in this
area include Materialize® (based on differential dataflow [51]), Re-
lationalAL* and Event Store.”> A common thread in these efforts is
wanting to provide a higher-level programming model with strong
semantics, whereas the Kafka ecosystem has generally prioritised
low-level work on scalability and fault tolerance [11].

Despite this progress, the core issues I raised in Turning the
database inside-out in 2014 [33] are still unsolved. Most applica-
tion logic is still executed in a request-response model: when the
application receives a request, it queries a database and returns
the result as of that point in time, but the client cannot subscribe
to be notified whenever the query result changes (other than by
making repeated requests, i.e. polling, which is slow and inefficient).
Incrementally maintained materialized views offer the potential to
replace the request-response paradigm with a publish-subscribe
paradigm, where a client can obtain not only the current state of
some resource, but also subscribe to a stream of events that provide
a low-latency notification whenever that state changes.

Our use of FRP for collaboration software (Section 3.2) is one
instantiation of this idea in the context of application software
running on the end user’s device. However, we are yet to see
a comparable change in the architecture of today’s cloud-based
service-oriented/microservices systems. Changing this status quo
requires innovations both in the programming model (how do ap-
plication developers express how the state of a system must change
as a result of underlying events?) and in the execution (how does
the system efficiently implement these operations?). Incrementally
maintained materializations of SQL queries (such as the example
in Section 2.2) are a good start, but more is needed to fully realise
this vision, such as incorporating arbitrary business logic into the
view materialization process.

ACKNOWLEDGMENTS

Thank you to Jean Bacon, Jamie Brandon, Mariano Guerra, Ian
Lewis, and Eiko Yoneki for feedback on a draft of this article. I
am grateful for support from a Leverhulme Trust Early Career
Fellowship, the Isaac Newton Trust, Nokia Bell Labs, and crowd-
funding supporters including Ably, Adria Arcarons, Chet Corcos,
Macrometa, Mintter, David Pollak, Relational AI, SoftwareMill, Tal-
ent Formation Network, and Adam Wiggins.

REFERENCES

[1] [n.d.]. Debezium. https://debezium.io/

[2] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J
Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-
of-Order Data Processing. Proceedings of the VLDB Endowment 8, 12 (Aug. 2015),
1792-1803. https://doi.org/10.14778/2824032.2824076

Tyler Akidau, Slava Chernyak, and Reuven Lax. 2018. Streaming Systems: The
What, Where, When, and How of Large-Scale Data Processing. O’Reilly Media.
Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing memory robustly
in message-passing systems. J. ACM 42, 1 (Jan. 1995), 124-142. https://doi.org/
10.1145/200836.200869

E g

3https://materialize.com/
“https://www.relational.ai/ - disclosure: RelationalAl financially supports my work
Shttps://www.eventstore.com/

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

[5] Hagit Attiya, Faith Ellen, and Adam Morrison. 2015. Limitations of Highly-
Available Eventually-Consistent Data Stores. In ACM Symposium on Principles of
Distributed Computing (PODC). ACM, 385-394. https://doi.org/10.1145/2767386.
2767419

[6] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn
Mostinckx, and Wolfgang de Meuter. 2013. A Survey on Reactive Programming.
Comput. Surveys 45, 4, Article 52 (Aug. 2013), 34 pages. https://doi.org/10.1145/
2501654.2501666

[7] Philip A Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jor-

gen Thelin. 2014. Orleans: Distributed Virtual Actors for Programma-

bility and Scalability. Technical Report MSR-TR-2014-41. Microsoft Re-
search. https://www.microsoft.com/en-us/research/publication/orleans-
distributed-virtual-actors-for-programmability-and- scalability/

Philip A. Bernstein and Nathan Goodman. 1983. Multiversion Concurrency

Control—Theory and Algorithms. ACM Transactions on Database Systems 8, 4

(Dec. 1983), 465-483. https://doi.org/10.1145/319996.319998

Dominic Betts, Julian Dominguez, Grigori Melnik, Fernando Simonazzi, and

Mani Subramanian. 2012. Exploring CORS and Event Sourcing. Microsoft. http:

//aka.ms/cqrs

Kenneth P Birman, André Schiper, and Pat Stephenson. 1991. Lightweight causal

and atomic group multicast. ACM Transactions on Computer Systems 9, 3 (Aug.

1991), 272-314. https://doi.org/10.1145/128738.128742

Jamie Brandon. 2021. Internal consistency in streaming systems. https://

scattered-thoughts.net/writing/internal- consistency-in-streaming- systems/

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a

Single Engine. IEEE Data Engineering Bulletin 38, 4 (Dec. 2015), 28—-38. http:

//sites.computer.org/debull/A15dec/p28.pdf

Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable failure detectors

for reliable distributed systems. J. ACM 43, 2 (March 1996), 225-267. https:

//doi.org/10.1145/226643.226647

Bernadette Charron-Bost, Fernando Pedone, and André Schiper (Eds.). 2010.

Replication: Theory and Practice. Vol. 5959. Springer LNCS. https://doi.org/10.

1007/978-3-642-11294-2

Rada Chirkova and Jun Yang. 2012. Materialized Views. Foundations and Trends

in Databases 4, 4 (Dec. 2012), 295-405. https://doi.org/10.1561/1900000020

Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reac-

tive Programming for GUIs. In 34th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI). ACM, 411-422. https:

//doi.org/10.1145/2491956.2462161

Shirshanka Das, Chavdar Botev, Kapil Surlaker, Bhaskar Ghosh, Balaji Varadara-

jan, Sunil Nagaraj, David Zhang, Lei Gao, Jemiah Westerman, Phanindra Ganti,

Boris Shkolnik, Sajid Topiwala, Alexander Pachev, Naveen Somasundaram, and

Subbu Subramaniam. 2012. All Aboard the Databus! Linkedin’s Scalable Consis-

tent Change Data Capture Platform. In 3rd ACM Symposium on Cloud Computing

(SoCC). https://doi.org/10.1145/2391229.2391247

Susan B Davidson, Hector Garcia-Molina, and Dale Skeen. 1985. Consistency in

Partitioned Networks. Comput. Surveys 17, 3 (1985), 341-370. https://doi.org/10.

1145/5505.5508

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.

In 21st ACM Symposium on Operating Systems Principles (SOSP). ACM, 205-220.

https://doi.org/10.1145/1294261.1294281

Martin Fowler. 2005. Event Sourcing.

EventSourcing.html

[21] Seth Gilbert and Nancy A Lynch. 2002. Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services. ACM SIGACT News 33, 2

(June 2002), 51-59. https://doi.org/10.1145/564585.564601

Victor B F Gomes, Martin Kleppmann, Dominic P Mulligan, and Alastair R

Beresford. 2017. Verifying strong eventual consistency in distributed systems.

Proceedings of the ACM on Programming Languages 1, OOPSLA (2017). https:

//doi.org/10.1145/3133933

[23] Jim N Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. 1996. The dan-

gers of replication and a solution. In ACM SIGMOD International Conference on
Management of Data. ACM, 173-182. https://doi.org/10.1145/233269.233330

[24] Ashish Gupta and Inderpal Singh Mumick (Eds.). 1999. Materialized Views:

Techniques, Implementations, and Applications. MIT Press.

Peter van Hardenberg and Martin Kleppmann. 2020. PushPin: Towards

production-quality peer-to-peer collaboration. In 7th Workshop on Principles

and Practice of Consistency for Distributed Data (PaPoC). ACM. https://doi.org/
10.1145/3380787.3393683

Pat Helland. 2015. Immutability Changes Everything. In 7th Biennial Conference

on Innovative Data Systems Research (CIDR). http://www.cidrdb.org/cidr2015/

Papers/CIDR15_Paper16.pdf

Pat Helland and Dave Campbell. 2009. Building on Quicksand. In 4th Biennial

Conference on Innovative Data Systems Research (CIDR). https://database.cs.wisc.

edu/cidr/cidr2009/Paper_133.pdf

8

[

[10

[11

[12

(13

[14

[15

[16

=
=

[18

[19

™
=

https://martinfowler.com/eaaDev/

[22

[25

[26

~
=

https://debezium.io/
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1145/200836.200869
https://doi.org/10.1145/200836.200869
https://materialize.com/
https://www.relational.ai/
https://www.eventstore.com/
https://doi.org/10.1145/2767386.2767419
https://doi.org/10.1145/2767386.2767419
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://doi.org/10.1145/319996.319998
http://aka.ms/cqrs
http://aka.ms/cqrs
https://doi.org/10.1145/128738.128742
https://scattered-thoughts.net/writing/internal-consistency-in-streaming-systems/
https://scattered-thoughts.net/writing/internal-consistency-in-streaming-systems/
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1007/978-3-642-11294-2
https://doi.org/10.1007/978-3-642-11294-2
https://doi.org/10.1561/1900000020
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2391229.2391247
https://doi.org/10.1145/5505.5508
https://doi.org/10.1145/5505.5508
https://doi.org/10.1145/1294261.1294281
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3133933
https://doi.org/10.1145/233269.233330
https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1145/3380787.3393683
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf
https://database.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf
https://database.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

[28]

[29]

[30]

(31

[32]

w
&

[34]
[35]

[36

[37

[38]

[39

[40]

Joseph M Hellerstein, Michael Stonebraker, and James Hamilton. 2007. Architec-
ture of a Database System. Foundations and Trends in Databases 1, 2 (Nov. 2007),
141-259. https://doi.org/10.1561/1900000002

Heidi Howard and Richard Mortier. 2020. Paxos vs Raft: have we reached consen-
sus on distributed consensus?. In 7th Workshop on Principles and Practice of Consis-
tency for Distributed Data (PaPoC). ACM. https://doi.org/10.1145/3380787.3393681
Ink & Switch. 2019. End-user programming. https://www.inkandswitch.com/end-
user-programming.htm]

David R Jefferson. 1985. Virtual time. ACM Transactions on Programming Lan-
guages and Systems 7, 3 (July 1985), 404 — 425. https://doi.org/10.1145/3916.3988
Ralph Kimball and Margy Ross. 2013. The Data Warehouse Toolkit: The Definitive
Guide to Dimensional Modeling (3rd ed.). John Wiley & Sons.

Martin Kleppmann. 2015. Turning the database inside-out with Apache
Samza. https://martin kleppmann.com/2015/03/04/turning-the-database-inside-
out.html

Martin Kleppmann. 2017. Designing Data-Intensive Applications. O’Reilly Media.
Martin Kleppmann. 2020. Moving Elements in List CRDTs. In 7th Workshop
on Principles and Practice of Consistency for Distributed Data (PaPoC). ACM.
https://doi.org/10.1145/3380787.3393677

Martin Kleppmann, Alastair R Beresford, and Boerge Svingen. 2019. Online Event
Processing. Commun. ACM 62, 5 (May 2019), 43-49. https://doi.org/10.1145/
3312527

Martin Kleppmann, Victor B F Gomes, Dominic P Mulligan, and Alastair R
Beresford. 2018. OpSets: Sequential Specifications for Replicated Datatypes
(Extended Version). https://arxiv.org/abs/1805.04263

Martin Kleppmann and Jay Kreps. 2015. Kafka, Samza and the Unix Philosophy
of Distributed Data. IEEE Data Engineering Bulletin 38, 4 (Dec. 2015), 4-14.
http://sites.computer.org/debull/A15dec/p4.pdf

Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark Mc-
Granaghan. 2019. Local-First Software: You own your data, in spite of the
cloud. In ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!). ACM, 154-178. https:
//doi.org/10.1145/3359591.3359737

Jay Kreps. 2013. The Log: What every software engineer should know about real-
time data’s unifying abstraction. http://engineering.linkedin.com/distributed-
systems/log-what-every-software-engineer-should-know-about-real- time-
datas-unifying

[41] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: a Distributed Messaging

[42]

[43]

[44]

[45]

[46]

[47]

[48

[49]

[50]

[51]

[52]

[53

[54]

[55]

System for Log Processing. In 6th International Workshop on Networking Meets
Databases (NetDB).

Raffi Krikorian. 2012. Timelines at Scale. In QCon San Francisco. https://www.
infoq.com/presentations/Twitter- Timeline- Scalability/

Roland Kuhn. 2021. Local-First Cooperation. https://www.infoq.com/articles/
local-first-cooperation/

Ajay Kulkarni and Ryan Booz. 2020. What the heck is time-series data (and
why do I need a time-series database)? https://blog.timescale.com/blog/what-
the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-
dcf3b1b18563/

Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (July 1978), 558-565. https://doi.org/10.1145/359545.
359563

Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News 32, 4 (Dec. 2001),
51-58.

Jodo Leitdo, José Pereira, and Luis Rodrigues. 2007. HyParView: A Membership
Protocol for Reliable Gossip-Based Broadcast (37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks). IEEE, 419-429. https://doi.org/
10.1109/dsn.2007.56

Linux Programmer’s Manual. [n.d.]. select(2) - Linux manual page. https:
//www.man?7.org/linux/man-pages/man2/select.2.html

Geoffrey Litt, Peter van Hardenberg, and Orion Henry. 2021. Cambria: Schema
Evolution in Distributed Systems with Edit Lenses. In 8th Workshop on Principles
and Practice of Consistency for Distributed Data (PaPoC). ACM, Article 8. https:
//doi.org/10.1145/3447865.3457963

David C Luckham. 2002. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley.

Frank McSherry, Derek G Murray, Rebecca Isaacs, and Michael Isard. 2013. Dif-
ferential dataflow. In 6th Biennial Conference on Innovative Data Systems Research
(CIDR). http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf

Jayadev Misra. 1986. Distributed Discrete-Event Simulation. Comput. Surveys 18,
1 (March 1986), 39-65. https://doi.org/10.1145/6462.6485

Mozilla Developer Network. [n.d.]. Event reference. https://developer.mozilla.
org/en-US/docs/Web/Events

Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,
Indranil Gupta, and Roy H. Campbell. 2017. Samza: Stateful Scalable Stream
Processing at LinkedIn. Proceedings of the VLDB Endowment 10, 12 (Aug. 2017),
1634-1645. https://doi.org/10.14778/3137765.3137770

Diego Ongaro and John K Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In USENIX Annual Technical Conference (ATC). USENIX.

Martin Kleppmann

Michiel Overeem, Marten Spoor, and Slinger Jansen. 2017. The dark side of event
sourcing: Managing data conversion. In 24th IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 193-204. https:
//doi.org/10.1109/SANER.2017.7884621

Kevin De Porre, Florian Myter, Christophe De Troyer, Christophe Scholliers,
Wolfgang De Meuter, and Elisa Gonzalez Boix. 2019. Putting Order in Strong
Eventual Consistency. In IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS 2019). Springer, 36-56. https://doi.org/10.1007/
978-3-030-22496-7_3

Yasushi Saito and Marc Shapiro. 2005. Optimistic Replication. Comput. Surveys
37, 1 (March 2005), 42-81. https://doi.org/10.1145/1057977.1057980

Fred B Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: a tutorial. Comput. Surveys 22, 4 (Dec. 1990), 299-319. https:
//doi.org/10.1145/98163.98167

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011.
Conlflict-Free Replicated Data Types. In 13th International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems (SSS 2011). Springer, 386—400.
https://doi.org/10.1007/978-3-642-24550-3_29

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011. A com-
prehensive study of Convergent and Commutative Replicated Data Types. Technical
Report 7506. INRIA. http://hal.inria.fr/inria- 00555588/

Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar, and Vijay
Chidambaram. 2020. Understanding and Benchmarking the Impact of GDPR
on Database Systems. Proceedings of the VLDB Endowment 13, 7 (March 2020),
1064-1077. https://doi.org/10.14778/3384345.3384354

Ben Stopford. 2017. Handling GDPR with Apache Kafka: How does a log forget?
https://www.confluent.io/blog/handling-gdpr-log-forget/

Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan] Demers, Mike J
Spreitzer, and Carl H Hauser. 1995. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In 15th ACM Symposium on Operating
Systems Principles (SOSP). ACM, 172-182. https://doi.org/10.1145/224056.224070
Ivan Valkov, Natalia Chechina, and Phil Trinder. 2018. Comparing Languages for
Engineering Server Software: Erlang, Go, and Scala with Akka. In 33rd Annual
ACM Symposium on Applied Computing (SAC). ACM, 218-225. https://doi.org/
10.1145/3167132.3167144

Marko Vukoli¢. 2015. The Quest for Scalable Blockchain Fabric: Proof-of-Work
vs. BFT Replication. In IFIP WG 11.4 International Workshop on Open Problems
in Network Security (iNetSec). Springer, 112-125. https://doi.org/10.1007/978-3-
319-39028-4_9

Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad
Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. 2015. Building a
replicated logging system with Apache Kafka. Proceedings of the VLDB Endowment
8,12 (Aug. 2015), 1654-1655. https://doi.org/10.14778/2824032.2824063

Alexey Zimarev. 2020. What is Event Sourcing? https://www.eventstore.com/
blog/what-is-event-sourcing

https://doi.org/10.1561/1900000002
https://doi.org/10.1145/3380787.3393681
https://www.inkandswitch.com/end-user-programming.html
https://www.inkandswitch.com/end-user-programming.html
https://doi.org/10.1145/3916.3988
https://martin.kleppmann.com/2015/03/04/turning-the-database-inside-out.html
https://martin.kleppmann.com/2015/03/04/turning-the-database-inside-out.html
https://doi.org/10.1145/3380787.3393677
https://doi.org/10.1145/3312527
https://doi.org/10.1145/3312527
https://arxiv.org/abs/1805.04263
http://sites.computer.org/debull/A15dec/p4.pdf
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://www.infoq.com/presentations/Twitter-Timeline-Scalability/
https://www.infoq.com/presentations/Twitter-Timeline-Scalability/
https://www.infoq.com/articles/local-first-cooperation/
https://www.infoq.com/articles/local-first-cooperation/
https://blog.timescale.com/blog/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/
https://blog.timescale.com/blog/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/
https://blog.timescale.com/blog/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/dsn.2007.56
https://doi.org/10.1109/dsn.2007.56
https://www.man7.org/linux/man-pages/man2/select.2.html
https://www.man7.org/linux/man-pages/man2/select.2.html
https://doi.org/10.1145/3447865.3457963
https://doi.org/10.1145/3447865.3457963
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://doi.org/10.1145/6462.6485
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.1109/SANER.2017.7884621
https://doi.org/10.1109/SANER.2017.7884621
https://doi.org/10.1007/978-3-030-22496-7_3
https://doi.org/10.1007/978-3-030-22496-7_3
https://doi.org/10.1145/1057977.1057980
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://doi.org/10.1007/978-3-642-24550-3_29
http://hal.inria.fr/inria-00555588/
https://doi.org/10.14778/3384345.3384354
https://www.confluent.io/blog/handling-gdpr-log-forget/
https://doi.org/10.1145/224056.224070
https://doi.org/10.1145/3167132.3167144
https://doi.org/10.1145/3167132.3167144
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.14778/2824032.2824063
https://www.eventstore.com/blog/what-is-event-sourcing
https://www.eventstore.com/blog/what-is-event-sourcing

	Abstract
	1 Introduction
	2 A Taxonomy of Event-based Systems
	2.1 Notifications and persistence
	2.2 Windowing in stream processing
	2.3 Database replication and events
	2.4 State machine replication (SMR)
	2.5 Partially ordered events
	2.6 Conflict-free Replicated Data Types (CRDTs)

	3 Practical Examples
	3.1 The Kafka Ecosystem
	3.2 Local-first Collaboration Software

	4 Conclusions and Future Work
	4.1 Multi-version/Branching Workflows
	4.2 Data Model Changes
	4.3 Data Change Notifications Everywhere

	Acknowledgments
	References

