
acmqueue | may-june 2022 88

research for practiceRRFPP

I
t is with great pride and no small amount of excitement
that I announce the reboot of acmqueue’s Research
for Practice column. For three years, beginning at
its inception in 2016, Research for Practice brought
both seminal and cutting-edge research—via careful

curation by experts in academia—within easy reach for
practitioners who are too busy building things to manage
the deluge of scholarly publications. We believe the series
succeeded in its stated goal of sharing “the joy and utility
of reading computer science research” between academics
and their counterparts in industry. We know our readers
have missed it, and we are delighted to rekindle the flame
after a three-year hiatus.

For this first installment, we invited Dr. Martin
Kleppmann, research fellow and affiliated lecturer
at the University of Cambridge, to curate a selection
of recent research papers in a perennially interesting
domain: convergent or “eventual consistent” replicated
systems. His expert analysis circles the topic, viewing
it through the lens of recent work in four distinct
research domains: systems, programming languages,
human-computer interaction, and data management.
Along the way, readers will be exposed to a variety
of data structures, algorithms, proof techniques, and
programming models (each described in terms of a distinct
formalism), all of which attempt to make programming

Research for
Practice Reboot

1 of 8
TEXT
ONLY

Convergence
RRFPP

Research for Practice
combines the resources

of the ACM Digital
Library, the largest

collection of computer
science research in the

world, with the expertise
of the ACM membership.

Research for Practice
columns have a common

goal of sharing the joy
and utility of reading

computer science
research between

academics and their
counterparts in industry.

acmqueue | may-june 2022 89

research for practiceRRFPP

large-scale distributed systems easier. I hope you enjoy his
column as much as I did.

—Peter Alvaro

RESEARCH FOR PRACTICE: CONVERGENCE
By Martin Kleppmann

In distributed systems, there are—broadly speaking—
two approaches to data consistency: consensus or

convergence. The consensus approach can be implemented
with algorithms such as Paxos or Raft, and it ensures
strong consistency, which means making the distributed
system appear as if it were not distributed (linearizable)
and as if there were no concurrency (serializable). This
approach makes the system easy to use, but it comes at
the cost of performance, scalability, and the kinds of faults
that can be tolerated, because every update needs to wait
for a reply from other nodes before it can complete.

The alternative approach, convergence, is more
commonly known as eventual consistency. In this
model, different nodes are allowed to process updates
independently, without waiting for each other. This is
typically faster, more robust, and more scalable, but it
leads to nodes having temporarily inconsistent versions
of the data. As those nodes communicate with each other,
those inconsistencies must be resolved—that is, they
should converge toward the same state.

Convergence is such a useful idea that different
research communities have developed several ways of
achieving it. This article looks at four variations on the
theme of convergence, drawn from four areas of computer
science. I have selected five fairly recent articles that

2 of 8

acmqueue | may-june 2022 90

research for practiceRRFPP

provide introductions to each of the techniques for
convergence.

CONFLICT-FREE REPLICATED DATA TYPES
Nuno Preguiça. Conflict-free Replicated Data Types: An
Overview. arXiv:1806.10254 [cs.DC], June 2018. https://arxiv.
org/abs/1806.10254

A conflict-free replicated data type (CRDT) is a data
structure that can be modified concurrently on

several nodes and provides a built-in algorithm for merging
those updates back together again. CRDTs have been
created for a variety of data types, such as sets, lists, key-
value maps, graphs, counters, and JSON (JavaScript Object
Notation) trees. They are used in server-side databases
such as Microsoft’s Azure CosmosDB and Redis Enterprise,
as well as client-side libraries for collaboration software
such as Automerge and Yjs.

CRDTs ensure convergence through commutativity—that
is, whenever two nodes have processed the same updates,
they will be in the same state, even if the updates arrived in
a different order. They achieve this property by adding some
metadata to the actual data structure: For example, many
algorithms associate a unique ID with each operation and
use that ID later on to refer to parts of the data structure.
This makes the operations unambiguous when there are
concurrent updates. By carefully managing this metadata,
CRDTs ensure that concurrent operations commute, enabling
different replicas to merge their state and converge.

OPERATIONAL TRANSFORMATION
David Sun, Chengzheng Sun, Agustina Ng, and Weiwei Cai.

3 of 8

https://arxiv.org/abs/1806.10254
https://arxiv.org/abs/1806.10254

acmqueue | may-june 2022 91

research for practiceRRFPP

Real Differences between OT and CRDT in Correctness and
Complexity for Consistency Maintenance in Co-Editors.
Proceedings of the ACM on Human-Computer Interaction,
volume 4, issue CSCW1, article 21, pages 1-30, May 2020.
https://dl.acm.org/doi/10.1145/3392825

Operational transformation (OT) is most commonly
used in realtime collaborative editors such as

Google Docs, and it ensures that whenever several users
concurrently update the document, they converge to the
same state. For plain text, the data structure is a linear
sequence of characters that can be updated by inserting or
deleting characters at any position. This idea has also been
generalized to rich text, spreadsheets, and other file types.
Such applications can be implemented with CRDTs as well,
but many existing collaboration products use OT. The OT
algorithm allows concurrent operations to be reordered
through rules that are more restrictive than the general
commutativity used by CRDTs.

OT is a much older technique than CRDTs; in fact, CRDTs
were created in response to several flawed OT algorithms
that were published in the 1990s and early 2000s. Today,
both OT and CRDTs are widely used, and the tradeoffs
between them are nuanced. The suggested article is
written by proponents of the OT approach, and its critique
of CRDTs is unusually polemic for an academic paper. Even
though I do not agree with everything the authors say, it’s
interesting to follow the spectacle of a heated debate.

MERGEABLE REPLICATED DATA TYPES
Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and
Suresh Jagannathan. Mergeable Replicated Data Types.

4 of 8

https://dl.acm.org/doi/10.1145/3392825

acmqueue | may-june 2022 92

research for practiceRRFPP

Proceedings of the ACM on Programming Languages,
volume 3, issue OOPSLA, article 154, pages 1-29, October
2019. https://dl.acm.org/doi/10.1145/3360580

MRDTs (mergeable replicated data types) is an
alternative take on convergence that is based on

ideas from version-control systems such as Git. In Git, if
two users independently edit the same part of a file, a user
must resolve the merge conflict manually, whereas CRDTs
and OT automatically merge concurrent updates without
requiring any user interaction. MRDTs combine CRDT/OT-
like automatic merging with Git-like version control.

MRDTs are data structures like CRDTs. The difference
is that while CRDTs provide a function for merging one
node’s state with another, MRDTs merge two branches of
a version history by not only looking at the latest state
on each branch, but also taking into account the most
recent common ancestor state of the two branches (i.e.,
the commit after which the two branches diverged). The
MRDT can therefore see what has changed on each of
the branches since the common ancestor, which allows it
to maintain less metadata than a CRDT. Instead, it must
maintain the commit history graph, which some CRDTs can
avoid. MRDT algorithms exist for counters, queues, sets,
maps, binary trees, and other data structures.

CONSISTENCY AS LOGICAL MONOTONICITY (CALM)
AND INVARIANT CONFLUENCE
Joseph M. Hellerstein and Peter Alvaro. Keeping CALM:
When Distributed Consistency Is Easy. Communications
of the ACM, volume 63, issue 9, pages 72–81, September
2020. https://dl.acm.org/doi/10.1145/3369736

5 of 8

https://dl.acm.org/doi/10.1145/3360580
https://dl.acm.org/doi/10.1145/3369736

acmqueue | may-june 2022 93

research for practiceRRFPP

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi,
Joseph M. Hellerstein, and Ion Stoica. Coordination
Avoidance in Database Systems. Proceedings of the VLDB
Endowment, volume 8, No. 3, pages 185-196, 2014. http://
www.vldb.org/pvldb/vol8/p185-bailis.pdf

The CRDT/OT/MRDT approaches are great in the
situations for which they have been designed,

but they are not sufficient to implement every type
of software. In particular, if you need to manage some
kind of limited resource—for example, to ensure that
customers do not spend more money than they have in
their accounts, or that you do not sell the same seat in a
theater or airplane to more than one person, or that you
do not promise the last in-stock item in the warehouse
to more than one buyer—then you cannot just let each
node update its state independently from other nodes.
Some sort of coordination is required to decide which
transaction goes through and who gets the seat or the
last item in stock, because operations that consume the
resource are mutually exclusive. This coordination could
be implemented as a consensus algorithm or a locking
protocol, for example.

The question then is: What general principle tells
us when to use CRDTs and friends, and when stronger
guarantees such as consensus are needed? The CALM
theorem provides a precise answer to this question:
Coordination can be avoided as long as the program is
logically monotonic. CRDT/OT/MRDT algorithms are all
ways of writing logically monotonic programs (the state
of a data structure is determined by a monotonically
growing set of updates); with such programs, the inputs

6 of 8

http://www.vldb.org/pvldb/vol8/p185-bailis.pdf
http://www.vldb.org/pvldb/vol8/p185-bailis.pdf

acmqueue | may-june 2022 94

research for practiceRRFPP

can arrive in any order without affecting the output. On
the other hand, managing access to a limited resource
is a nonmonotonic operation and therefore requires
coordination among the nodes in the system.

An alternative but related approach is to use the
concept of invariant confluence. An invariant is confluent if
two nodes can independently make updates that preserve
the invariant, and you can be sure that the invariant
continues to be satisfied when you merge the updates. Say
you have an invariant such as “no seat in the theater is sold
to more than one person.” This example is not confluent
because one node may sell an empty seat (which is valid),
another node may independently sell the same seat (also
valid), but the merge of the two updates violates the
invariant. On the other hand, a referential integrity (foreign
key) constraint is confluent as long as you only insert but
don’t delete. If all invariants are confluent, an application
can be coordination-free, whereas nonconfluent invariants
require coordination.

CONCLUSIONS
An interesting detail about these four approaches is
that they have arisen from totally different areas of
computer science: CRDTs come from the operating
systems community, OT from human-computer interaction,
MRDTs from programming languages, and CALM/invariant
confluence from databases. Each community has applied
its own style of thinking to the idea of convergence, which
sometimes leads to misunderstandings of each other’s
work, especially as the different communities don’t always
talk to each other as much as you might hope. Taken

7 of 8

acmqueue | may-june 2022 95

research for practiceRRFPP

together, however, this diverse set of perspectives gives us
a stronger set of tools to apply to real-world problems.

Peter Alvaro is an associate professor of computer science
at the University of California Santa Cruz, where he leads
the Disorderly Labs research group (disorderlylabs.github.
io). His research focuses on using data-centric languages
and analysis techniques to build and reason about data-
intensive distributed systems in order to make them scalable,
predictable, and robust to the failures and nondeterminism
endemic to large-scale distribution. He earned his Ph.D. at
UC Berkeley, where he studied with Joseph M. Hellerstein.
He is a recipient of the National Science Foundation Career
Award, Facebook Research Award, Usenix ATC 2020 Best
Presentation Award, SIGMOD 2021 Distinguished PC Award,
and UCSC Excellence in Teaching Award.

Martin Kleppmann is a research fellow and affiliated lecturer
at the University of Cambridge and author of the bestselling
book Designing Data-Intensive Applications (O’Reilly Media).
He works on distributed systems security and collaboration
software. Previously, he was a software engineer
and entrepreneur, cofounding and selling two startups and
working on large-scale data infrastructure at LinkedIn.
Copyright © 2022 held by owner/author. Publication rights licensed to ACM.

8 of 8

CONTENTS2

http://disorderlylabs.github.io/
http://disorderlylabs.github.io/

